8 «ВТ», домашнее задание на 10 декабря.

- $\boxed{\mathbf{1}}$ В треугольнике ABC на сторонах AB и AC выбраны точки C_1 и B_1 , причём $AC_1=3C_1B$, $CB_1=2B_1A$. Прямые B_1C_1 и BC пересекаются в точке A_1 . Найдите отношение $BC:BA_1$.
- $oxed{2}$ В треугольнике ABC на сторонах AB и AC выбраны точки C_1 и B_1 , причём $AC_1:C_1B=CB_1:B_1A=1:3$. Прямые B_1C_1 и BC пересекаются в точке A_1 . Найдите отношение $BA_1:A_1C$.
- ${f 3}$ В равнобедренном треугольнике боковая сторона равна a. Расстояние между основаниями биссектрис треугольника, проведённых к боковым сторонам, равно b. Найдите основание треугольника.
 - $\boxed{\mathbf{4}}$ В треугольнике ABC чевианы AA_1 , BB_1 , CC_1 пересекаются в точке P.
 - $\boxed{\mathbf{a}}$ Известно, что $AC_1: C_1B = 2:1$, $AB_1: B_1C = 1:3$. Найдите отношение $AP: PA_1$.
- $\overline{\mathbb{b}}$ Докажите, что в такой конструкции независимо от выбора точки P верно равенство $AP: PA_1 = AC_1: C_1B + AB_1: B_1C$ (этот факт назывется теоремой Ван-Обеля, в честь фламандского математика XIX века).
 - $\fbox{\bf 5}$ В треугольнике ABC с $\angle ABC = 120^\circ$ проведена биссектриса BL. Докажите, что

$$\frac{1}{BA} + \frac{1}{BC} = \frac{1}{BL}$$