8ВМ, спецкурс, занятие 28 7 апреля 2023 Планарные графы

Определение. Граф называется *планарным*, если его можно нарисовать на плоскости так, чтобы его ребра не пересекались. (При этом ребра не обязательно должны быть прямыми линиями.)

У любого графа можно подсчитать количество вершин V и количество ребер E.

У планарного графа дополнительно можно еще подсчитать количество частей, на которые он разрезает плоскость. Эти части называются $\it гранями$, их количество обозначается через $\it F$.

Теорема (формула Эйлера). В любом связном планарном графе выполняется соотношение V-E+F=2.

Доказательство. Зафиксируем число вершин V и будем вести индукцию по числу ребер E.

<u>База:</u> минимальное число ребер в связном графе с V вершинами равняется V-1. В этом случае граф является деревом, в нем нет циклов, а значит грань всего одна. Получается V-(V-1)+1=2.

<u>Переход:</u> допустим, для всех графов с E-1 ребрами формула уже доказана. Рассмотрим граф с E ребрами. Пусть в нем F граней. В графе есть цикл (поскольку для деревьев все уже доказано). Удалим одно ребро из этого цикла. От этого число граней уменьшится на 1. Получится граф с V вершинами, E-1 ребрами и F-1 гранями. По предположению индукции, V-(E-1)+(F-1)=2. А значит и в исходном графе V-E+F=2. □

Теорема. Если в планарном графе V вершин, E ребер, F граней и k компонент связности, то V - E + F = k + 1.

Доказательство. Можно доказать аналогично индукцией по числу ребер. Когда мы убираем ребро, сохраняя граф связным, то E и F уменьшаются на 1, а V и k остаются неизменными. А когда мы убираем мост, то E уменьшается на 1, k увеличивается на 1, а V и F остаются неизменными.

В любом случае, значение выражения V-E+F-k остается неизменным, а для графа без ребер оно равно 1. \square

Формулу Эйлера V-E+F=2 можно применять не только для планарных графов, но и для многогранников.

Пусть вам дан многогранник, сделанный из резины (и пустой внутри). Вырежем небольшое отверстие в центре одной из граней и растянем его края так, чтобы резина стала плоскостью. Тогда ребра многогранника станут ребрами планарного графа. Количество вершин, ребер и граней у этого графа будет таким же, как и у исходного многогранника.

Замечание. Графы можно рисовать не только на плоскости, но и на других поверхностях, например на поверхности бублика или кренделя. Предположим, что все получившиеся грани можно «расплющить», чтобы они стали плоскими.

Тогда выполняется формула Эйлера $V-E+F=\chi$, где χ зависит только от поверхности, на которой рисуют граф (так называемая эйлерова характеристика поверхности).

Обозначим через K_n полный граф с n вершинами (в нем любые две вершины соединены ребром). Через $K_{n,m}$ обозначим полный двудольный граф, с n вершинами в одной доле и m в другой (любые две вершины из разных долей соединены ребром).

1 Нарисуйте на плоскости без пересечений графы a K_4 ; b $K_{2,n}$; c какой-нибудь граф с 10 вершинами, степени всех вершин которого не меньше 4.

2 В стране 7 озер, соединенных между собой 11 каналами, причем от любого озера можно доплыть до любого другого. Сколько в стране островов, образованных озерами и каналами?

3 Докажите, что в планарном графе, у которого больше одного ребра

 $\boxed{\text{a}} 3F \leq 2E; \qquad \boxed{\text{b}} E \leq 3V - 6;$

с есть вершина, степень которой не больше 5.

Подсказка: у каждой грани не меньше трех сторон.

4 Докажите, что если в планарном графе нет циклов длины три, то $2F \le E$.

5 Докажите, что графы а K_5 ; b $K_{3,3}$ не являются планарными.

6 Докажите, что вершины планарного графа можно раскрасить в шесть цветов так, чтобы концы любого ребра были разных цветов.

7 Дан выпуклый многогранник, у которого все грани являются правильными пяти- или шестиугольниками. Сколько может быть пятиугольных граней?

Выпуклый многогранник называется *правильным*, если все его грани — правильные многоугольники и во всех вершинах сходится одинаковое число ребер.

Планарный граф называется *правильным*, если степени всех его вершин равны, а у всех граней одинаковое число сторон.

8 а Докажите, что существует всего пять правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр (погуглите, если не знаете, как они выглядят).

b* Сколько существует правильных планарных графов?

9 Изобразите на торе (поверхности бублика) без пересечений графы

<u>Подсказка:</u> тор удобно представлять как квадрат со склеенными противоположными сторонами.

 10^* На окружности отметили n точек и соединили каждые две из них хордой. Никакие три хорды не пересеклись в одной точке.

а Найдите количество точек пересечения.

b Найдите количество частей, на которые эти хорды разрезали круг.