Делимость и малая теорема Ферма

B арифметике по модулю мы научились выполнять три основные операции: $+,-,\times$, и до сих пор молчаливо обходили вопрос существования операции деления. B обычной арифметике деление определялось как операция обратная умножению: если $5\cdot 2=10$, то 10:2=5. Назовем частным от деления числа a на d по модулю m такое число b, что $a\equiv bd\pmod{m}$.

 $\boxed{f 1}$ Найдите частное от деления a на d

		0	1	2	3	4
	0					
	1			3	2	
a	2			1		
	3					
	4					
			mo	\overline{d} 5		

		0	1	2	3	4	5
b	0						
	1		1				
	2						
	3						
	4						
	5						
	$\mod 6$						

Из задачи 1 следует, что деление в арифметике по модулю осуществимо не всегда, но гораздо чаще, чем деление нацело в обычной арифметике: $1:3\equiv 2\pmod 5$.

 $\boxed{\mathbf{2}^{ee}}$ Если 1 делится на a по модулю m, то и любое число b делится на a по модулю m.

 $\mathit{Число}\ a\ \mathit{называется}\ \mathbf{oбратимым}\ \mathbf{B}\ \mathbf{арифметикe}\ \mathbf{по}\ \mathbf{модулю}\ m,\ \mathit{если}\ \mathit{существует}\ \mathit{такоe}\ \mathit{число}\ a^{-1},\ \mathit{что}\ \mathit{aa}^{-1}\equiv 1\ (\mathrm{mod}\ m).$ $\mathit{Число}\ a^{-1}\ \mathit{называется}\ \mathbf{oбратныm}\ \mathbf{k}\ \mathbf{числу}\ \mathit{a}\ \mathbf{no}\ \mathbf{модулю}\ \mathit{m}.$

3 Найдите обратные числа по модулю 7 к числам 1, 2, 3, 4, 5, 6.

 $\mathit{Число}\ a \neq 0\ \mathit{называется}\ \mathsf{делителем}\ \mathsf{нуля}\ \mathsf{в}\ \mathsf{арифметикe}\ \mathsf{по}\ \mathsf{модулю}\ m,\ \mathit{если}$ $\mathit{существует}\ \mathit{отличноe}\ \mathit{om}\ \mathit{нуля}\ \mathit{число}\ b\ \mathit{makoe},\ \mathit{что}\ \mathit{ab} \equiv 0\ (\mathrm{mod}\ m).$

- 4 Найдите делители нуля в арифметике по модулю 8.
- 5 Докажите, что, если число обратимо, то обратное к нему единственно.
- 6^{\vee} Докажите, что число не может быть одновременно и обратимым и делителем нуля.
- 7 Докажите, что если m составное число, то найдется число a, являющееся делителем нуля по модулю m.

8 Докажите, что если a — не делитель нуля, то
$\boxed{\mathbf{a}} \ a^2, a^3, a^4, \ldots$ тоже не являются делителями нуля;
$\boxed{\mathrm{b}}$ среди чисел a^2, a^3, a^4, \dots должна найтись единица.
$oxed{9}$ Докажите, что если a взаимно просто с m , то числа $a,2a,3a,\dots(m-1)a$
дают разные остатки по модулю m .
$\boxed{\mathrm{b}}$ Докажите, что если p — простое число, все числа, отличные от нуля,
обратимы.
$\boxed{{}_{\!$
обратимы.
$\boxed{f 10}$ Докажите малую теорему Ферма : если $p-$ простое, то $n^p\equiv n\pmod p$.

 $\boxed{a} 2^{100}$ на 101; $\boxed{\text{b}}$ 3^{102} на 101; 11 Найдите остаток от деления $\boxed{\text{d}}\ 3^{2012} \text{ Ha } 43; \qquad \boxed{\text{e}}\ 8^{1543} \text{ Ha } 48.$ с 8⁹⁰⁰ на 29;

 $|\mathbf{12}^{\vee}|$ Докажите, что если p простое и p>2, то 7^p-5^p-2 делится на 6p.

13 Докажите, что $m^5 n - m n^5$ кратно 30 при любых целых m и n.

14 * Пусть p — простое число, отличное от 2, 3 и 5. Докажите, что число, записанное p-1 единицей, кратно p. (Например, 111111 кратно 7.)