7 класс, геометрия. Десятая неделя, 07-12 ноября.

Задача. В четырёхугольнике ABCD AB = AD и BC = DC. Докажите, что это дельтоид.

<u>Задача.</u> В выпуклом четырёхугольнике ABCD AB = CD и BC = AD. Докажите, что это параллелограмм.

При решении задач естественно предполагать выпуклость четырёхугольников. На самом деле при решении первой задачи выпуклость никак не используется (и дельтоид запросто может быть невыпуклым), а вот в условиях второй задачи четырёхугольник обязан быть выпуклым. Это будет доказано в домашней работе.

Решим важную задачу.

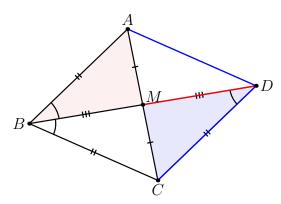
Признак равнобедренной трапеции. В четырёхугольнике ABCD AB = CD и $\angle A = \angle D$. Докажите, что это равнобедренная трапеция (формально надо добавить $AD \neq BC$, чтобы она не оказалась прямоугольником).

Мы без труда доказали, что если у треугольника высота совпадает с биссектрисой или с медианой, то он равнобедренный. А вот доказать то же про треугольник, у которого биссектриса совпадает с медианой, так просто не получается. И тем не менее это верно.

Задача (важная). Докажите, что если у треугольника биссектриса является медианой, то он равнобедренный.

Решение основано на важном и красивом дополнительном построении, который обычно называют $y\partial soeнuem$ meduahw. Оно состоит в том, что медиану AM треугольника ABC продлевают на её длину, отмечая на луче [AM) точку D так, что AD=2AM. Коротко можно записать появление этой точки так: "построим D так, что M— середина [AD]". $Sanomhume\ smom\ npuëm!$

Итак, решение. Пусть BM — биссектриса и высота треугольника ABC. Продлим её: пусть M — середина \overline{BD} . Тогда ABCD — параллелограмм по определению. По одному из свойств параллелограмма $\angle CDM = \angle ABM$, но BM — биссектриса, так что $\angle CDM = \angle ABM = \angle BM$, что означает, что треугольник BCD равнобедренный, BC = CD. Но по ещё одному свойству параллелограмма AB = CD, так что AB = BC.



Задача (важная). Докажите признак равенства треугольников по двум сторонам и медиане к третьей стороне.

Задача. В треугольнике ABC, у которого $\angle A + \angle B = \angle C$, проведена медиана CM. Докажите, что $\overline{CM} = \frac{1}{2}AB$.