Математический кружок 5 класса в школе 1543.

Кенгурята. Принцип крайнего.

- Какой крайний срок поставить?
- Ставь 31-е.
- 31-е? Нормально, вы успеете?
- Успеем, конечно. Просто месяц не указывай.

Вступление

- 1 Можно ли расставить ладей на шахматной доске так, чтобы каждая била хотя бы трех других?
- 2 Несколько пятиклассников встали в круг. Оказалось, что у каждого пятиклассника хотя бы один сосед не ниже его. Могут ли все они быть разного роста?

А теперь сами

- 1 Можно ли в вершинах куба расставить числа от 1 до 8 так, чтобы разность любых двух соседних по ребру чисел была не больше двух? (Из большего вычитаем меньшее.)
- **2** Можно ли нарисовать на плоскости несколько отрезков так, чтобы каждый отрезок своими концами упирался внутрь других отрезков?
- $\boxed{\bf 3}$ Шахматная доска разбита на доминошки 1×2 . Докажите, что найдётся пара доминошек, образующая квадрат 2×2 .
 - 4 Можно ли расставить на клетчатой плоскости
 - а несколько коней так, чтобы каждый бил хотя бы четырёх других?
 - b несколько коней так, чтобы каждый бил хотя бы пять других?
 - 5 Существуют ли 4 числа, попарные разности между которыми равны
 - а 2, 2, 3, 4, 5 и 6;
 - b 3, 5, 8, 11, 12 и 20?
- **6** а Можно ли натуральные числа от 1 до 99 выписать в строку так, чтобы разность любых двух соседних (из большего вычитается меньшее) была не меньше 50?
 - **b** Тот же вопрос для чисел от 1 до 100.
- 7 25 астрономов на двадцати пяти разных планетах наблюдают друг за другом при помощи телескопов, причём каждый наблюдает за ближайшим к нему (все расстояния между планетами различны). Докажите, что
 - а есть две планеты, астрономы на которых наблюдают друг за другом;
 - ь хотя бы за одним астрономом никто не наблюдает.
- 8 Маляр-хамелеон ходит по клетчатой доске на одну клетку по вертикали или горизонтали. Попав в очередную клетку, он либо перекрашивается в её цвет, либо перекрашивает клетку в свой цвет. Белого маляра-хамелеона кладут на чёрную доску размерами 8×8 клеток. Сможет ли он раскрасить её в шахматном порядке?
- $\boxed{\mathbf{9}}$ В клетках доски 8×8 расставлены числа $1,2,\ldots,64$. Докажите, что найдётся пара соседних по стороне клеток, числа в которых отличаются не менее чем на 5.

Суперзадача

1 На шахматной доске расставлено десять королей. На каждом ходу одного из королей сдвигают на одну клетку в любом направлении (по вертикали, горизонтали или диагонали). Один король может ходить несколько раз подряд. После нескольких ходов оказалось, что каждый король побывал во всех клетках ровно по одному разу и вернулся на исходную клетку. Докажите, что был момент, когда ни один из королей не стоял на своей исходной клетке.

Найдите путь между двумя выделенными клеточками, придерживаясь следующих условий:

- •Отрезок линии проходит между центрами соседних клеток.
- \bullet Путь проходит по следующему маршруту: 1-2-3-4-1-2
- •Путь должен пройти по всем клеточкам и не иметь самопересечений.

1	3	4	4	1	3	2	3
4	2	1	3	2	4	1	4
1	3	2	4	1	3	4	1
3	2	2	1	3	2	4	2
4	1	2	3	4	2	1	3
4	3	3	4	2	1	3	4
1	2	1	1	1	2	1	3
2	3	4	2	3	4	2	4