Группы чуть разошлись, в одной я успел разобрать важный пример вычисления площади круга, в другой нет. Короче, считаем площадь круга радиуса 1, должно получиться π . А точнее, считаем площадь четверти круга — $\int_0^1 \sqrt{1-x^2} \, dx$. Считаем сначала первообразную, то есть $\int \sqrt{1-x^2} \, dx$. Замена $x=\cos\alpha$. При этом мы можем считать, что α в первой четверти. В частности, $\sqrt{1-\cos^2\alpha}=\sin\alpha$, а наш интеграл равен — $\int \sin^2\alpha \, d\alpha$. Этот интеграл равен $\frac{1}{2} \int (\cos 2\alpha - 1) d\alpha = \frac{1}{4} \sin 2\alpha - \frac{\alpha}{2} + C$ Теперь переходим снова к иксу, $\alpha = \arccos x$, $\sin 2\alpha = 2 \sin \alpha \cos \alpha = 2x\sqrt{1-x^2}$. Итак, в качестве одной из первообразных для нашей функции можно взять $\frac{1}{4} x \sqrt{1-x^2} - \frac{1}{2} \arccos x$. Подставляем 1, подставляем 0, вычитаем из первого второе и получаем $\frac{\pi}{4}$.

Можно было не возвращаться к иксу, а менять пределы интегрирования. Если замена монотонна, то пишут так: $\int\limits_0^1 \sqrt{1-x^2}\,dx = \langle x=\cos\alpha\rangle = -\int\limits_{\pi/2}^0 \sin^2\alpha\,d\alpha = \int\limits_0^{\pi/2} \sin^2\alpha\,d\alpha.$ Замену пределов интегрирования проговаривают (себе) так: «В то время как икс меняется от 0 до 1, альфа меняется от $\frac{\pi}{2}$ до 0». Дальше $\int\limits_0^{\pi/2} \sin^2\alpha\,d\alpha = \left(\frac{\alpha}{2} - \frac{1}{4}\sin2\alpha\right)\Big|_0^{\pi/2} = \pi/4.$

Теперь, собственно, ДЗ. Проверять его я не планирую, сразу скажу. Так что делайте (или не делайте) для себя.

Геометрия, 11 "В", домашнее задание на 29 декабря.

- $\fbox{1.}$ Вычислите $\int\limits_{-1}^{1} \frac{dx}{1+x^2}$. Вычислите $\lim\limits_{a\to +\infty} \int\limits_{-a}^{a} \frac{dx}{1+x^2}$. Нарисуйте картинки.
- $\boxed{2.}$ Вычислите $\int\limits_{1}^{e} \frac{\ln x}{x} \, dx.$
- $\boxed{3.}$ Вычислите площадь эллипса с полуосями a и b подобно тому, как вычислялась площадь круга. Должно получиться πab .
- 4. Графики синуса и косинуса, пересекаясь, ограничивают множество одинаковых криволинейных фигур. Найдите площадь одной такой фигуры.
- 5^* Даны m и $A \notin m$. Рассматриваются всевозможные прямые $l \ni A$. Для каждой строится общий перпендикуляр [PQ] прямых m и l $(P \in m, Q \in l)$. Найдите ГМТ Q.