Геометрия, 11 "В", домашнее задание на 15 декабря.

- [1] [ЕГЭ, тренировочный вариант. Требуется "ЕГЭшное" оформление!] Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$, у которого $AB=5,\ BC=3$ и $CC_1=4$. Через середину диагонали AC_1 проведена плоскость α , перпендикулярная этой диагонали.
 - а) Докажите, что $D_1 \in \alpha$.
 - б) Найдите площадь сечения параллелепипеда плоскостью α .
 - 2 Вычислите интегралы, сделав подходящую замену переменной:

2 Вычислите интегралы:

a)
$$\int \frac{x^3 - 2}{x^2 + x} dx$$
b)
$$\int \frac{dx}{\sin^2 x \cos^2 x}$$
b)
$$\int \frac{\ln \left(x + \sqrt{1 + x^2}\right)}{\sqrt{1 + x^2}} dx$$

4* Плоскость пересекла цилиндрическую поверхность по эллипсу, отличному от круга. Точки этого эллипса на развёртке поверхности заполняют некоторую кривую. Какую?

 5^* Из центроида G треугольника ABC на его стороны AB, BC и AC опущены перпендикуляры GC_1 , GA_1 и GB_1 соответственно. Точки A_2 , B_2 , C_2 симметричны точкам A_1 , B_1 и C_1 относительно G. Докажите, что прямые AA_2 , BB_2 и CC_2 пересекаются в одной точке.